How Non-Member Functions Improve Encapsulation | Dr Dobb's

How Non-Member Functions Improve Encapsulation

10/29/12 6:47 PM

I'll start with the punchline: If you're writing a function that can be implemented as

either a member or as a non-friend non-member, you should prefer to implement it

as a non-member function. That decision increases class encapsulation. When you

think encapsulation, you should think non-member functions.

Surprised? Read on.

Background

When I wrote the first edition of Effective C++ in 1991, I examined the problem of de-

termining where to declare a function that was related to a class. Given a class C and

a function £ related to C, I developed the following algorithm:

1 if (f needs to be virtual)

2

make f a member function of C;

3 elseif (f is operator>> or

4

NSO G

9
10

operator<<)
{
make f a non-member function;
if (f needs access to non-public
members of C)

make f a friend of C;

}

llelse if (f needs type conversions

12
13
14
15
16
17

on its left-most argument)
{
make f a non-member function;
if (f needs access to

non-public members of C)

http://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197#

Page 1 of 13

How Non-Member Functions Improve Encapsulation | Dr Dobb's 10/29/12 6:47 PM
18 make f a friendof C;
19 }
20e1se

make f a member function of C;

This algorithm served me well through the years, and when I revised Effective C++
for its second edition in 1997, I made no changes to this part of the book.

In 1998, however, I gave a presentation at Actel, where Arun Kundu observed that
my algorithm dictated that functions should be member functions even when they

could be implemented as non-members that used only C's public interface. Is that re-

ally what I meant, he asked me? In other words, if £ could be implemented as a mem-
ber function or a non-friend non-member function, did I really advocate making it a
member function? I thought about it for a moment, and I decided that that was not
what I meant. I therefore modified the algorithm to look like this:

1 if (f needs to be virtual)
) make f a member function of C;

3 elseif (f is operator>> or

4 operator<<)

5 {

6 make f a non-member function;

7 if (f needs access to non-public
8 members of C)

9 make f a friend of C;

10

11elseif(f needs type conversions
12 on its left-most argument)
13 {

14 make f a non-member function;

15 if (f needs access to non-public

http://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197# Page 2 of 13

How Non-Member Functions Improve Encapsulation | Dr Dobb's 10/29/12 6:47 PM

16 members of C)
17 make f a friend of C;
18 }

19elseif(f can be implemented via C's

20 public interface)

21 make f a non-member function;
22else

23

make f a member function of C;

Since then, I've been battling programmers who've taken to heart the lesson that be-
ing object-oriented means putting functions inside the classes containing the data on
which the functions operate. After all, they tell me, that's what encapsulation is all
about.

They are mistaken.
Encapsulation

Encapsulation is a means, not an end. There's nothing inherently desirable about en-
capsulation. Encapsulation is useful only because it yields other things in our soft-
ware that we care about. In particular, it yields flexibility and robustness. Consider
this struct, whose implementation I think we'll all agree is unencapsulated:

lstruct Point {

2 int x, y;

3};

14

The weakness of this struct is that it's not flexible in the face of change. Once clients
started using this struct, it would, practically speaking, be very hard to change it; too
much client code would be broken. If we later decided we wanted to compute x and
y instead of storing those values, we'd probably be out of luck. We'd be similarly

thwarted if we decided a superior design would be to look x and y up in a database.
This is the real problem with poor encapsulation: it precludes future implementation
changes. Unencapsulated software is inflexible, and as a result, it's not very robust.
When the world changes, the software is unable to gracefully change with it. (Re-

http://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197# Page 3 of 13

How Non-Member Functions Improve Encapsulation | Dr Dobb's 10/29/12 6:47 PM

member that we're talking here about what is practical, not what is possible. It's clear-
ly possible to change struct Point, but if enough code is dependent on it in its
current form, it's not practical.)

Now consider a class with an interface that offers clients capabilities similar to those
afforded by the struct above, but with an encapsulated implementation:

1 class Point {

2 public:

3 int getXvValue() const;

4 int getYValue() const;

5 void setXValue(int newXValue);
6 void setYValue(int newYValue);
7

8 private:

9 .o // whatever...

10};

This interface supports the implementation used by the struct (storing x and y as
ints), but it also affords alternative implementations, such as those based on compu-
tation or database lookup. This is a more flexible design, and the flexibility makes the
resulting software more robust. If the class's implementation is found lacking, it can
be changed without requiring changes to client code. Assuming the declarations of
the public member functions remain unchanged, client source code is unaffected. (If a
suitable implementation has been adopted, clients need not even recompile.)

Encapsulated software is more flexible than unencapsulated software, and, all other
things being equal, that flexibility makes it the superior design choice.

Degrees of Encapsulation

The class above doesn't fully encapsulate its implementation. If the implementation
changes, there's still code that might break. In particular, the member functions of the
class might break. In all likelihood, they are dependent on the particulars of the data
members of the class. Still, it seems clear that the class is more encapsulated than the

http://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197# Page 4 of 13

How Non-Member Functions Improve Encapsulation | Dr Dobb's 10/29/12 6:47 PM

struct, and we'd like to have a way to state this more formally.

It's easily done. The reason the class is more encapsulated than the struct is that more
code might be broken if the (public) data members in the struct change than if the
(private) data members of the class change. This leads to a reasonable approach to
evaluating the relative encapsulations of two implementations: if changing one might
lead to more broken code than would the corresponding change to the other, the for-
mer is less encapsulated than the latter. This definition is consistent with our intu-
ition that if making a change is likely to break a lot of code, we're less likely to make
that change than we would be to make a different change that affected less code.
There is a direct relationship between encapsulation (how much code might be bro-
ken if something changes) and practical flexibility (the likelihood that we'll make a
particular change).

An easy way to measure how much code might be broken is to count the functions
that might be affected. That is, if changing one implementation leads to more poten-
tially broken functions than does changing another implementation, the first imple-
mentation is less encapsulated than the second. If we apply this reasoning to the
struct above, we see that changing its data members may break an unknowably large
number of functions — every function that uses the struct. In general, we can't count
how many functions this is, because there's no way to locate all the code that uses a
particular struct. This is especially true for library code. However, the number of
functions that might be broken if the class's data members change is easy to deter-
mine: it's all the functions that have access to the private part of the class. That's just
four functions (assuming none are declared in the private part of the class), and we
know that because they're all conveniently listed in the class definition. Since they're
the only functions that have access to the private parts of the class, they're the only
functions that can be affected if those parts change.

Encapsulation and Non-Member Functions

We've now seen that a reasonable way to gauge the amount of encapsulation in a
class is to count the number of functions that might be broken if the class's implemen-
tation changes. That being the case, it becomes clear that a class with n member func-
tions is more encapsulated than a class with n+1 member functions. And that obser-
vation is what justifies my argument for preferring non-member non-friend functions

to member functions: if a function £ could be implemented as a member function or

http://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197# Page 5 of 13

How Non-Member Functions Improve Encapsulation | Dr Dobb's 10/29/12 6:47 PM

as a non-friend non-member function, making it a member would decrease encapsu-
lation, while making it a non-member wouldn't. Since functionality is not at issue
here (the functionality of f is available to class clients regardless of where f is locat-
ed), we naturally prefer the more encapsulated design.

It's important that we're trying to choose between member functions and non-friend
non-member functions. Just like member functions, friend functions may be broken
when a class's implementation changes, so the choice between member functions and
friend functions is properly made on behavioral grounds. Furthermore, we now see
that the common claim that "friend functions violate encapsulation” is not quite true.
Friends don't violate encapsulation, they just decrease it — in exactly the same man-
ner as member functions.

This analysis applies to any kind of member functions, including static ones. Adding
a static member function to a class when its functionality could be implemented as a
non-friend non-member decreases encapsulation by exactly the same amount as does
adding a non-static member function. One implication of this is that it's generally a
bad idea to move a free function into a class as a static member just to show that it's
related to the class. For example, if I have an abstract base class for Widgets and then
use a factory function to make it possible for clients to create Widgets, the following
is a common, but inferior way to organize things:

1 // a design less encapsulated than it could be

2 class Widget {

3 .o // all the Widget stuff; may be
4 // public, private, or protected
5

6 public:

7

8 // could also be a non-friend non-member

9 staticWidget* make(/* params */);

10y ;

A better design is to move make out of Widget, thus increasing the overall encapsu-

http://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197# Page 6 of 13

How Non-Member Functions Improve Encapsulation | Dr Dobb's 10/29/12 6:47 PM

lation of the system. To show that Wwidget and make are related, the proper tool is a
namespace:

1// a more encapsulated design
2namespace WidgetStuff {

3 class Widget { ... };

4 wWidget* make(/* params */);

5}.

14

Alas, there is a weakness to this design when templates enter the picture.
Templates and Factory Functions at Namespace Scope

In the previous section, I argued that static member functions should be made non-
members whenever that is possible, because that increases class encapsulation. I con-
sider these two possible implementations for a factory function:

1 // the less encapsulated design

2 class Widget {

3

4 public:

5 staticWidget* make(/* params */);
6 };

7

8 // the more encapsulated design

9 namespace WidgetStuff {

10 class Widget { ... };

1 Widget* make(/* params */);

12};

Andrew Koenig pointed out that the first design (where make is static inside the

class) enables one to write a template function that invokes make without knowing
the type of what is being made:

http://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197# Page 7 of 13

How Non-Member Functions Improve Encapsulation | Dr Dobb's 10/29/12 6:47 PM

ltemplate<typename T>

2void doSomething(/* params */)

34

4 // invoke T's factory function

5 T *pt = T::make(/* params */);

6

7y

This isn't possible with the namespace-based design, because there's no way from in-
side a template to identify the namespace in which a type parameter is located. That
is, there's no way to figure out what 2?22 is in the pseudocode below:
ltemplate<typename T>

2void doSomething(/* params */)

34

4 // there's no way to know T's containing namespace!

5 T *pt = ?2??::make(/* params */);

6

7y

For factory functions and similar functions which can be given uniform names, this
means that maximal class encapsulation and maximal template utility are at odds. In
such cases, you have to decide which is more important and cater to that. However,

for static member functions with class-specific names, the template issue fails to arise,
and encapsulation can again assume precedence.

Syntax Issues

If you're like many people with whom I've discussed this issue, you're likely to have
reservations about the syntactic implications of my advice that non-friend non-mem-
ber functions should be preferred to member functions, even if you buy my argu-
ment about encapsulation. For example, suppose a class Wombat supports the func-
tionality of both eating and sleeping. Further suppose that the eating functionality
must be implemented as a member function, but the sleeping functionality could be

http://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197# Page 8 of 13

How Non-Member Functions Improve Encapsulation | Dr Dobb's 10/29/12 6:47 PM

implemented as a member or as a non-friend non-member function. If you follow my
advice from above, you'd declare things like this:

lclass Wombat {

2public:

3 void eat (double tonsToEat) ;
4 .

5};

6

7voidsleep(Wombat& w, double hoursToSnooze);

That would lead to a syntactic inconsistency for class clients, because for a Wombat w,
they'd write

to make it eat, but they would write

to make it sleep. Using only member functions, things would look much neater:

1class Wombat {

2public:

3 void eat (double tonsToEat) ;

4 void sleep(double hoursToSnooze);
5 cen

6};

7

8w.eat(.564);

9w.sleep(2.57);

Ah, the uniformity of it all! But this uniformity is misleading, because there are more
functions in the world than are dreamt of by your philosophy.

To put it bluntly, non-member functions happen. Let us continue with the Wombat
example. Suppose you write software to model these fetching creatures, and imagine

that one of the things you frequently need your Wombats to do is sleep for precisely

http://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197# Page 9 of 13

How Non-Member Functions Improve Encapsulation | Dr Dobb's 10/29/12 6:47 PM

half an hour. Clearly, you could litter your code with calls to w.sleep(.5), but that
would be a lot of .5s to type, and at any rate, what if that magic value were to
change? There are a number of ways to deal with this issue, but perhaps the simplest
is to define a function that encapsulates the details of what you want to do. Assum-
ing you're not the author of Wombat, the function will necessarily have to be a non-
member, and you'll have to call it as such:

1// might be inline, but it doesn't matter

2void nap(Wombat& w) { w.sleep(.5); }
3

4Wombat w;

5..
6nap (w) ;

And there you have it, your dreaded syntactic inconsistency. When you want to feed
your wombats, you make member function calls, but when you want them to nap,
you make non-member calls.

If you reflect a bit and are honest with yourself, you'll admit that you have this al-
leged inconsistency with all the nontrivial classes you use, because no class has every
function desired by every client. Every client adds at least a few convenience func-
tions of their own, and these functions are always non-members. C++ programers are
used to this, and they think nothing of it. Some calls use member syntax, and some
use non-member syntax. People just look up which syntax is appropriate for the func-
tions they want to call, then they call them. Life goes on. It goes on especially in the
STL portion of the Standard C++ library, where some algorithms are member func-
tions (e.g., size), some are non-member functions (e.g., unique), and some are both

(e.g., £ind). Nobody blinks. Not even you.
Interfaces and Packaging

Herb Sutter has explained that the "interface" to a class (roughly speaking, the func-
tionality provided by the class) includes the non-member functions related to the
class, and he's shown that the name lookup rules of C++ support this meaning of "in-
terface." This is wonderful news for my "non-friend non-members are better than
members" argument, because it means that the decision to make a class-related func-

http://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197# Page 10 of 13

How Non-Member Functions Improve Encapsulation | Dr Dobb's 10/29/12 6:47 PM

tion a non-friend non-member instead of a member need not even change the inter-
face to that class! Moreover, the liberation of the functions in a class's interface from
the confines of the class definition leads to some wonderful packaging flexibility that
would otherwise be unavailable. In particular, it means that the interface to a class
may be split across multiple header files.

Suppose the author of the Wombat class discovered that Wombat clients often need a
number of convenience functions related to eating, sleeping, and breeding. Such con-
venience functions are by definition not strictly necessary. The same functionality
could be obtained via other (albeit more cumbersome) member function calls. As a
result, and in accord with my advice in this article, each convenience function should
be a non-friend non-member. But suppose the clients of the convenience functions for
eating rarely needed the convenience functions for sleeping or breeding. And sup-
pose the clients of the sleeping and breeding convenience functions also rarely need-
ed the convenience functions for eating and, respectively, breeding and sleeping.

Rather than putting all Wombat-related functions into a single header file, a prefer-
able design would be to partition the Wombat interface across four separate headers,
one for core Wombat functionality (primarily the class definition), and one each for
convenience functions related to eating, sleeping, and breeding. Clients then include
only the headers they need. The resulting software is not only clearer, it also contains
fewer gratuitous compilation dependencies. This multiple-header approach was
adopted for the standard library. The contents of namespace std are spread across 50
different headers. Clients #include the headers declaring the parts of the library
they care about, and they ignore everything else.

In addition, this approach is extensible. When the declarations for the functions mak-
ing up a class's interface are spread across multiple header files, it becomes natural
for clients creating application-specific sets of convenience functions to cluster those
functions into a new header file and to #include that file as appropriate. In other
words, to treat the application-specific convenience functions just like they treat the
convenience functions provided by the author of the class. This is as it should be. Af-
ter all, they're all just convenience functions.

Minimalness and Encapsulation

In Effective C++, I argued for class interfaces that are complete and minimal. Such in-

http://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197# Page 11 of 13

How Non-Member Functions Improve Encapsulation | Dr Dobb's 10/29/12 6:47 PM

terfaces allow class clients to do anything they might reasonably want to do, but
classes contain no more member functions than are absolutely necessary. Adding
functions beyond the minimum necessary to let clients get their jobs done, I wrote,
decreases the class's comprehensibility and maintainability, plus it increases compila-
tion times for clients. Jack Reeves has written that the addition of member functions
beyond those truly required violates the open/closed principle, yields fat class inter-
faces, and ultimately leads to software rot. That's a fair number of arguments for min-
imizing the number of member functions in a class, but now we have an additional
reason: failure to do so decreases a class's encapsulation.

Of course, a minimal class interface is not necessarily the best interface. I remarked in
Effective C++ that adding functions beyond those truly necessary may be justifiable if
it significantly improves the performance of the class, makes the class easier to use, or
prevents likely client errors. Based on his work with various string-like classes, Jack
Reeves has observed that some functions just don't "feel" right when made non-mem-
bers, even if they could be non-friend non-members. The "best" interface for a class
can be found only by balancing many competing concerns, of which the degree of en-
capsulation is but one.

Still, the lesson of this article should be clear. Conventional wisdom notwithstanding,
use of non-friend non-member functions improves a class's encapsulation, and a pref-
erence for such functions over member functions makes it easier to design and devel-
op classes with interfaces that are complete and minimal (or close to minimal). Argu-
ments about the naturalness of the resulting calling syntax are generally unfounded,
and adoption of a predilection for non-friend non-member functions leads to packag-
ing strategies for a class's interface that minimize client compilation dependencies
while maximizing the number of convenience functions available to them.

It's time to abandon the traditional, but inaccurate, ideas of what it means to be ob-
ject-oriented. Are you a true encapsulation believer? If so, I know you'll embrace non-
friend non-member functions with the fervor they deserve.

Acknowledgements

Thanks to Arun Kundu for asking the question that led to this article. Thanks also to
Jack Reeves, Herb Sutter, Dave Smallberg, Andrei Alexandrescu, Bruce Eckel, Bjarne
Stroustrup, and Andrew Koenig for comments on pre-publication drafts that weren't
as good as they should have been. (That's why they were drafts.) Finally, great thanks

http://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197# Page 12 of 13

How Non-Member Functions Improve Encapsulation | Dr Dobb's 10/29/12 6:47 PM

to Adela Novak for organizing the C++ seminars in Lucerne (Switzerland) that led to
the many hours on planes and trains that allowed me to write the initial draft of this
article.

Scott Meyers is a recognized authority on C++; he provides consulting services to clients
worldwide. He is the author of Effective C++, Second Edition (Addison-Wesley, 1998),
More Effective C++ (Addison-Wesley, 1996), and Effective C++ CD (Addison-Wesley,
1999). Scott received his Ph.D. in Computer Science from Brown University in 1993.

http://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197# Page 13 of 13

